Mon. Oct 21st, 2019

Mysterious Mineral from Earth’s Mantle Discovered in South African Diamond

2 min read
Mysterious Mineral from Earth's Mantle Discovered in South African Diamond

A single grain of rock lodged in a diamond contains a never-before-found mineral.

And that newfound substance could reveal unusual chemical reactions unfolding in the depths of the mantle, the layer of Earth that lies between the planet’s crust and outer core.

Scientists unearthed the mineral from a volcanic site in South Africa known as the Koffiefontein pipe. Shining diamonds speckle the dark, igneous rock that lines the pipe, and the diamonds themselves contain tiny bits of other minerals from hundreds of miles beneath Earth’s surface. Within one of these sparkling stones, scientists found a dark green, opaque mineral that they estimated was forged about 105 miles (170 kilometers) underground.

They named the newfound mineral “goldschmidtite” in honor of acclaimed geochemist Victor Moritz Goldschmidt, according to the study, published Sept. 1 in the journal American Mineralogist.

The entire mantle is about 1,802 miles (2,900 km) thick, according to National Geographic, which makes the layer’s lowermost regions difficult for scientists to study. The intense pressure and heat in the upper mantle transform humble carbon deposits into sparkling diamonds; the rocks trap other mantle minerals in their structures and can be pushed to the planet surface by underground volcanic eruptions. By analyzing mineral inclusions in the diamonds, scientists can take a peek at chemical processes that occur far beneath the crust.

The entire mantle is about 1,802 miles (2,900 km) thick, according to National Geographic, which makes the layer’s lowermost regions difficult for scientists to study. The intense pressure and heat in the upper mantle transform humble carbon deposits into sparkling diamonds; the rocks trap other mantle minerals in their structures and can be pushed to the planet surface by underground volcanic eruptions. By analyzing mineral inclusions in the diamonds, scientists can take a peek at chemical processes that occur far beneath the crust.

“Goldschmidtite is highly unusual for an inclusion captured by diamond and gives us a snapshot of fluid processes that affect the deep roots of continents during diamond formation,” mantle geochemist Graham Pearson, Meyer’s co-supervisor, said in the statement. The odd mineral now lies in the Royal Ontario Museum in Toronto, Meyer told Live Science in an email.

Leave a Reply

Your email address will not be published. Required fields are marked *